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Abstract
We present a novel Vision Transformer (ViT)-based Siamese network for visual analogical reasoning developed
for the Kid-inspired Visual Analogies (KiVA) Challenge. This architecture achieves 95.9% accuracy on the
benchmark, demonstrating strong performance across all difficulty levels and establishing the effectiveness
of the architecture for visual reasoning tasks. Code is available at https://github.com/jsalvasoler/
kiva-iccv.

1 Introduction

Visual analogical reasoning, the ability to infer and apply ab-
stract rules from visual examples, is a hallmark of human in-
telligence and a critical component of flexible, general-purpose
problem-solving [1]. The KiVA benchmark provides a frame-
work for evaluating this capability in AI systems, grounding
the task in developmental psychology by using simple transfor-
mations of everyday objects that are solvable even by young
children [2]. The challenge frames this task in the classic A:B
:: C:? format, where a model must identify the transformation
that turns A into B and apply it to C to find the correct outcome
among several choices. The following is an example of a task:

Figure 1: Example of a KiVA task.

The KiVA benchmark comprises three difficulty levels: KiVA
(easy), where only the object identity changes between the ex-
ample and test transformations; KiVA-functions (moderate),
in which both the object identity and one visual feature (such
as orientation, size, or number) change; and KiVA-functions-
compositionality (difficult), where the object identity and
two visual features (for example, orientation, size, or number)
change between the example and test. This progression allows
for a systematic evaluation of analogical reasoning as the com-
plexity of the required transformation increases.

2 Method

Our approach employs a Siamese Network [3] designed specifi-
cally for visual analogical reasoning. Given an example transfor-
mation pair (A, B) and a test scenario C with multiple candidate
choices (D1, . . . ,Dn), the model must identify which choice
correctly completes the analogy. The model operates as follows:

1. The example transformation (A, B) is encoded using a trans-
formation encoder to produce a transformation vector tAB.

2. Each candidate transformation (C,D1), . . . , (C,Dn) is simi-
larly encoded to produce choice vectors tCDi .

3. The goal is to identify the choice i where tCDi is most similar
to tAB, typically measured using cosine similarity.

An important detail of our approach is that we assume that
the eight images of the KiVA task can be extracted from the
“stitched” image. It is a fair assumption, as the complexity of the
task is the same when the images are given separately. Moreover,
it would be simple to train a model to extract the images from
the stitched image, if necessary. In our KiVA task, with n = 3,
we will refer to these images as A, B, C, D1, D2, D3, where D1,
D2, D3 are the three choices.

Transformation Encoder A traditional approach to this task
would be to encode each image independently and compute
the transformation as t = f (B) − f (A), following the analogy-
making strategy used in models like Word2Vec [4]. However,
we found that this method was insufficient for capturing the
nuanced visual relationships between images in the analogy task.
Instead, we model the transformation directly as t = f (A, B),
where f is a transformer-based image encoder that leverages
cross-image attention to jointly process both images. Through
experiments with various vision transformer architectures (ViT
and DINOv3), we determined that a ViT-based approach was
the most effective for this purpose.

Architecture of the ViT-based Transformation Encoder We
adapt the ViT architecture, which is pretrained on 224×224 im-
ages, to process two images as a unified sequence. Both input
images (A and B) are independently passed through the pre-
trained ViT patch embedding layer. For 224×224 images with
16×16 patches, this produces two sequences of 196 patch em-
beddings each, with dimension d (e.g., d = 384 for ViT-Small).
These patch embeddings are concatenated and a learnable [CLS]
token is prepended to form a unified sequence that will aggregate
the transformation representation. Positional embeddings are
then added to provide spatial location information, where the
embedding matrix is extended by duplicating the original patch
positional embeddings for both images. Learned segment em-
beddings distinguish patches from the “before” image (Segment
1) versus the “after” image (Segment 2), with Segment 0 for the
[CLS] token. The sequence is then passed through the pretrained
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ViT transformer blocks (12 layers for ViT-Small). Critically,
the self-attention mechanism allows patches from image A to
attend to patches from image B, enabling direct comparison of
corresponding spatial regions. Finally, after layer normalization,
the [CLS] token is extracted and passed through a learnable
projection head (not part of pretrained ViT) consisting of lin-
ear layers, ReLU, dropout, and layer normalization to produce
the final transformation embedding tfinal

AB ∈ Re. The complete
forward pass can be summarized as:

patchesA, patchesB ∈ R196×d

x = [[CLS] ; patchesA ; patchesB] ∈ R393×d

x← x + [posCLS ; pospatches ; pospatches]

x← x + segment_embed(seg_ids)
x← TransformerBlocks(x)

tfinal
AB = ProjectionHead(LayerNorm(x)[0]) ∈ Re

Loss Function After comparing the standard triplet loss and
softmax cross-entropy loss, we found that a simple contrastive
analogy loss [5] performed best. Given a training example con-
sisting of an example transformation tex, one correct choice trans-
formation tpos, and n incorrect choice transformations {tnegi

}ni=1,
the loss aims to maximize the similarity between tex and tpos,
minimize the similarity between tex and each tnegi

, and enforce
a margin m between positive and negative similarities:

L =
1

n − 1

n−1∑
i=1

max
(
0,m −

(
spos − snegi

))
(1)

where spos = sim(tex, tpos) and snegi
= sim(tex, tnegi

) are the
cosine similarities. In the KiVA challenge with n = 3 choices
per example, we have 2 negative examples.

3 Experiments & Results

Implementation and Hardware The implementation uses
PyTorch for modeling and Neptune for logging. We perform
the experiments on a single NVIDIA L40S GPU with 40GB of
memory.

Model Configuration We use vit_small_patch16_224 as
our encoder backbone, initializing its weights with pretrained
checkpoints from timm. This sets a resolution of 224 × 224
pixels. We set the embedding dimension to e = 512, and the
projection head consists of two linear layers with a ReLU activa-
tion, dropout, and layer normalization, mapping the ViT output
to the final embedding space. This gives the model a total of
22.7M learnable parameters.

Training Configuration The optimizer AdamW with weight
decay 1 × 10−4 is used to train the model. A cosine annealing
schedule is used to decay the learning rate over 20 total epochs,
starting from 3 × 10−5 for the encoder parameters and 3 × 10−4

for the projection parameters. The batch size is 64 with a gra-
dient accumulation of 4 for an effective batch size of 256. The
contrastive margin is m = 0.05. We use mixed precision training
to speed up the training process.

Training Data We use the code from the official KiVA dataset
[2] to augment the provided training data. Our pipeline gener-
ated random training samples on-the-fly that follow a similar
distribution as the official training set. We included transforma-
tions with parameter combinations not present in the original
training set to improve model generalization. We set the epoch
length to 65536 examples, 2752 of which come from the official
training set, and the rest are generated on-the-fly.

Results Table 1 presents our model’s Top-1 accuracy on both
validation and test sets, broken down by difficulty level. The
results demonstrate the effectiveness of our approach, and the
model’s generalization is excellent, as the gap between valida-
tion and test accuracy is minimal. Figure 2 provides a granular
breakdown of test set performance, showing that while the model
performance decreases as task complexity increases, particularly
on compositionality tasks involving counting. The final configu-
ration was identified after extensive experimentation (152 runs),
as illustrated by the sample of training curves in Figure 3.

Table 1: Final accuracy (%) on the KiVA benchmark. Results are
shown for validation and test sets across three difficulty levels.

Split KiVA KiVA-func KiVA-comp Overall
(Easy) (Moderate) (Difficult)

Validation 100% 100% 94% 95.4%
Test 100% 100% 95% 95.9%

Figure 2: Radar plot of accuracy on the test set by transformation
type.

Figure 3: Validation accuracy during KiVA training runs.

Conclusion We presented a ViT-based Siamese network that
processes image transformation pairs as unified sequences, en-
abling the direct modeling of visual changes via cross-attention.
Our approach achieves 95.9% accuracy on the KiVA benchmark,
demonstrating that joint encoding of transformation pairs is a
highly effective strategy for visual analogical reasoning. This
architecture provides a strong foundation for future work on
visual reasoning tasks.
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